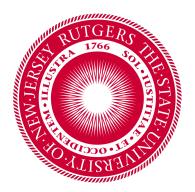


Adversarial Substructured Representation Learning for Mobile User Profiling

Presenter: Pengyang Wang

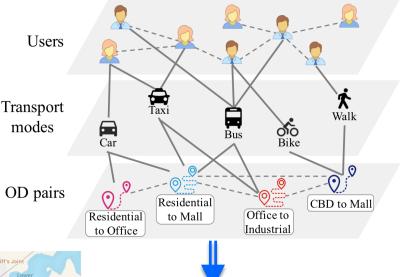
Pengyang Wang, Yanjie Fu, Xiaolin Li, Hui Xiong

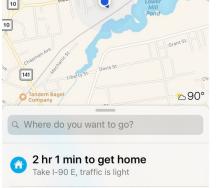


- Background and Motivation
- Definition and Problem Statement
- Methodology
- Evaluation
- Conclusion

Motivation Application: Toward Adaptive User Interfaces

A similarity graph of users, transportations, OD pairs





Parked Car Near Pleasant St

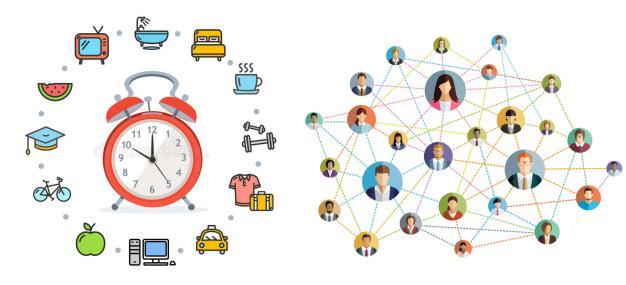
AE1 C Howitt Ct

Adaptive interfaces by:

- (1) inferring trip purposes,
- (2) transport modes,
- (3) origin-destination pairs to improve user engagement and performances

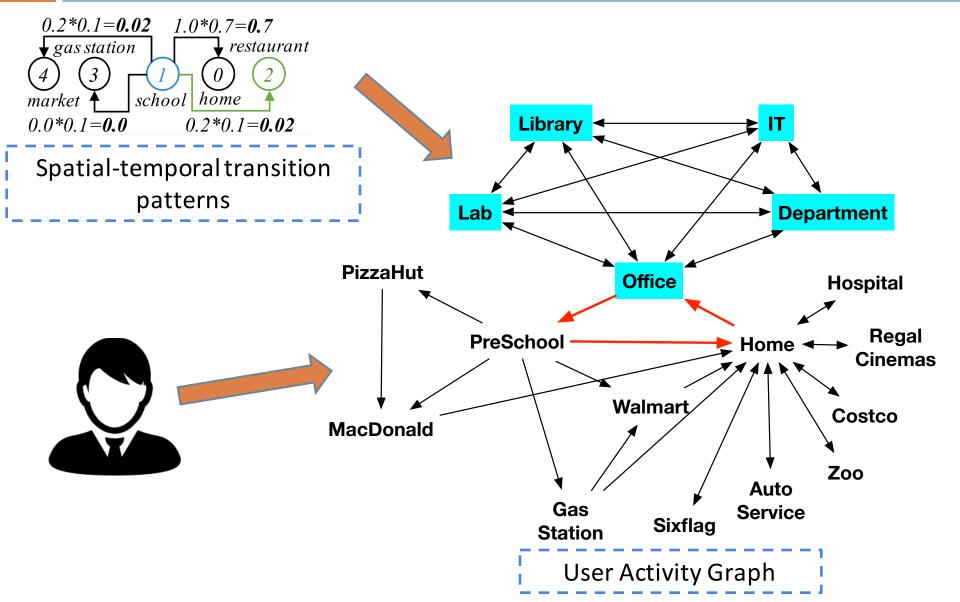
Challenge I: Implicit User Patterns in Mobile Activities

 Human activities are spatially, temporally, and socially structural.

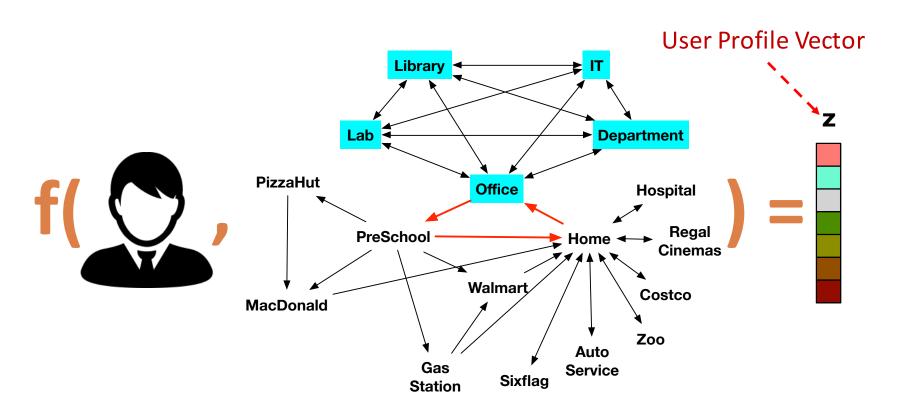


• How can we identify a data structure to better describe a mobile user's activities?

From Users To Activity Graphs



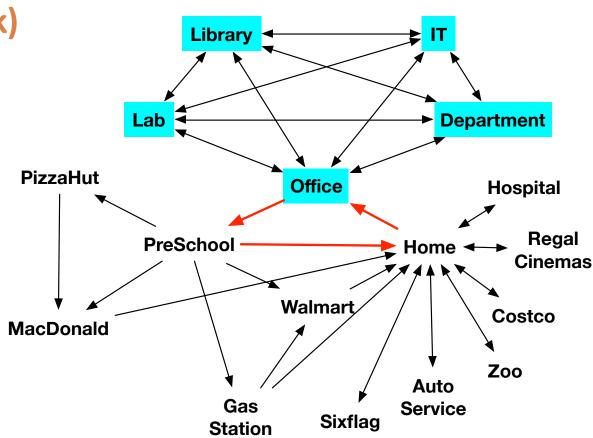
Problem Formulation: Representation Learning with Activity Graphs



 Given a user and corresponding user activity graph, we aim to map the user to a profile vector

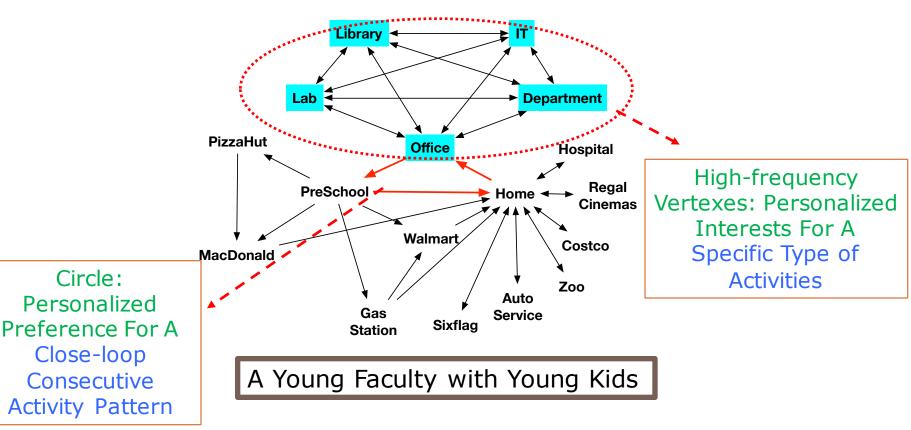
Global Behavioral Pattern

Entire structures: how a user's activities globally interact with each other (strongly link, weakly link, no link)



Substructure Behavioral Pattern

 Substructures: topology of subgraphs that feature the unique behavioral patterns of a user's activities



Problem Reformulation: Representation Learning with Global and Sub-Structure Awareness

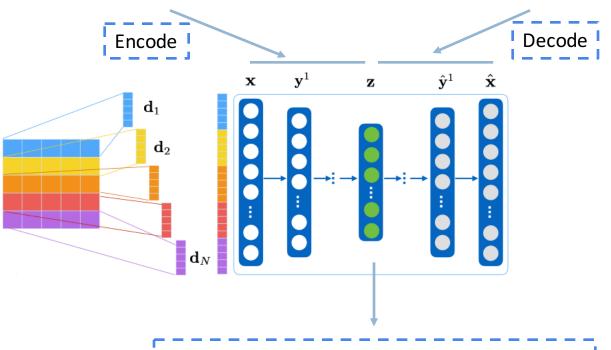


Entire Structure Patterns Substructure Patterns

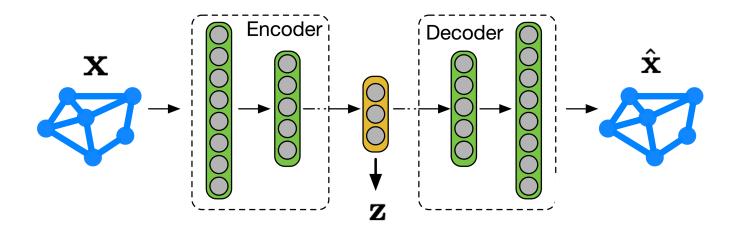
Preserving Entire-Structures

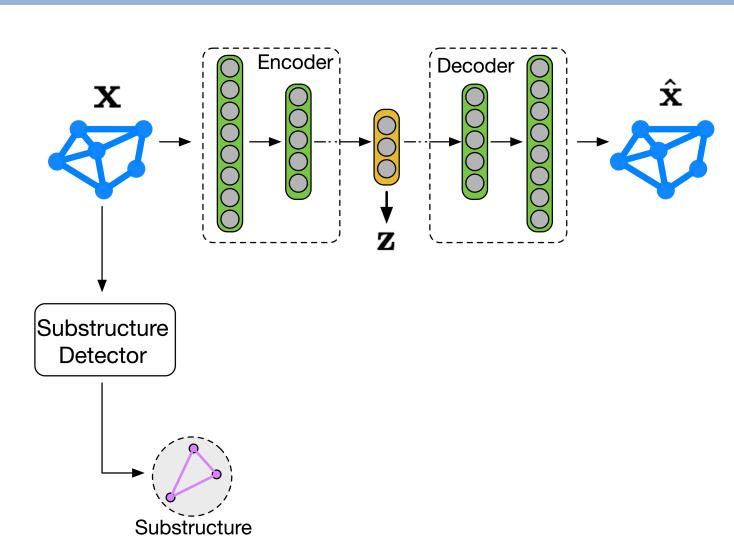
$$\begin{cases} \mathbf{y}_{i}^{1} &= \sigma(\mathbf{W}^{1}\mathbf{x}_{i} + \mathbf{b}^{1}), \\ \mathbf{y}_{i}^{k} &= \sigma(\mathbf{W}^{k}\mathbf{y}_{i}^{k-1} + \mathbf{b}^{k}), \forall k \in \{2, 3, \dots, o\}, \\ \mathbf{z}_{i} &= \sigma(\mathbf{W}^{o+1}\mathbf{y}_{i}^{o} + \mathbf{b}^{o+1}). \end{cases} \begin{cases} \hat{\mathbf{y}}_{i}^{o} &= \sigma(\hat{\mathbf{W}}^{o+1}\mathbf{z}_{i} + \hat{\mathbf{b}}^{o+1}), \\ \hat{\mathbf{y}}_{i}^{k-1} &= \sigma(\hat{\mathbf{W}}^{k}\hat{\mathbf{y}}_{i}^{k} + \hat{\mathbf{b}}^{k}), \forall k \in \{2, 3, \dots, o\}, \\ \hat{\mathbf{x}}_{i} &= \sigma(\hat{\mathbf{W}}^{1}\hat{\mathbf{y}}_{i}^{1} + \hat{\mathbf{b}}^{1}). \end{cases}$$

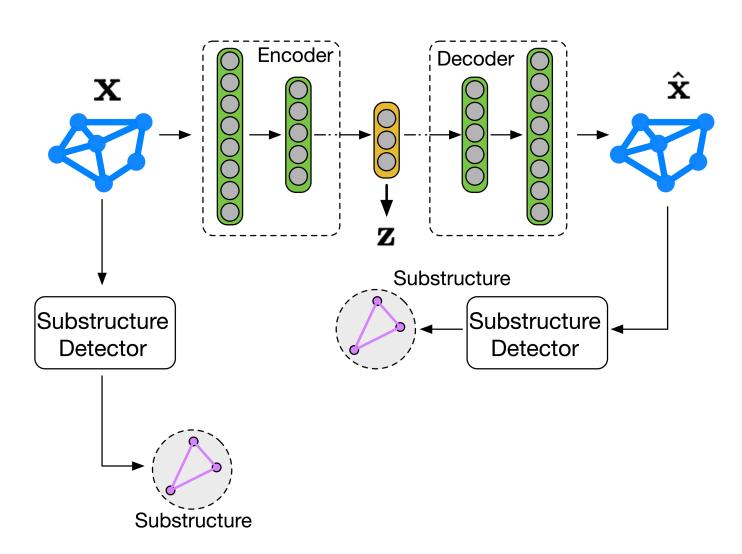
$$\begin{cases} \hat{\mathbf{y}}_{i}^{o} &= \sigma(\hat{\mathbf{W}}^{o+1}\mathbf{z}_{i} + \hat{\mathbf{b}}^{o+1}), \\ \hat{\mathbf{y}}_{i}^{k-1} &= \sigma(\hat{\mathbf{W}}^{k}\hat{\mathbf{y}}_{i}^{k} + \hat{\mathbf{b}}^{k}), \forall k \in \{2, 3, \cdots, o\}, \\ \hat{\mathbf{x}}_{i} &= \sigma(\hat{\mathbf{W}}^{1}\hat{\mathbf{y}}_{i}^{1} + \hat{\mathbf{b}}^{1}). \end{cases}$$

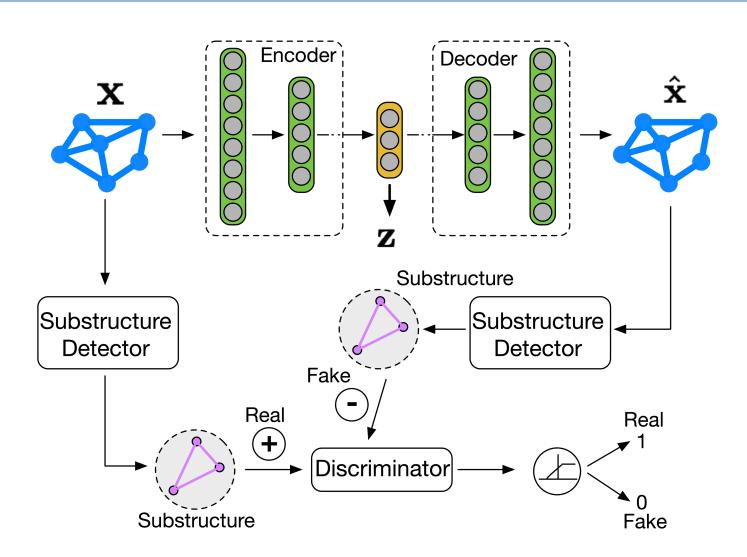


Learned representation from hidden layer

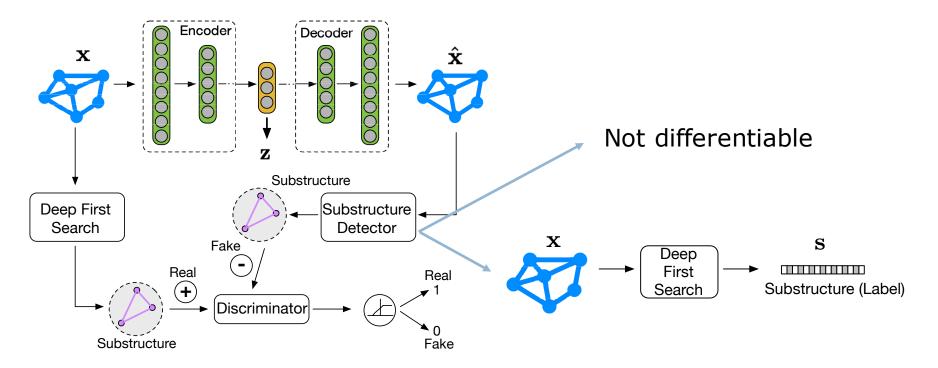






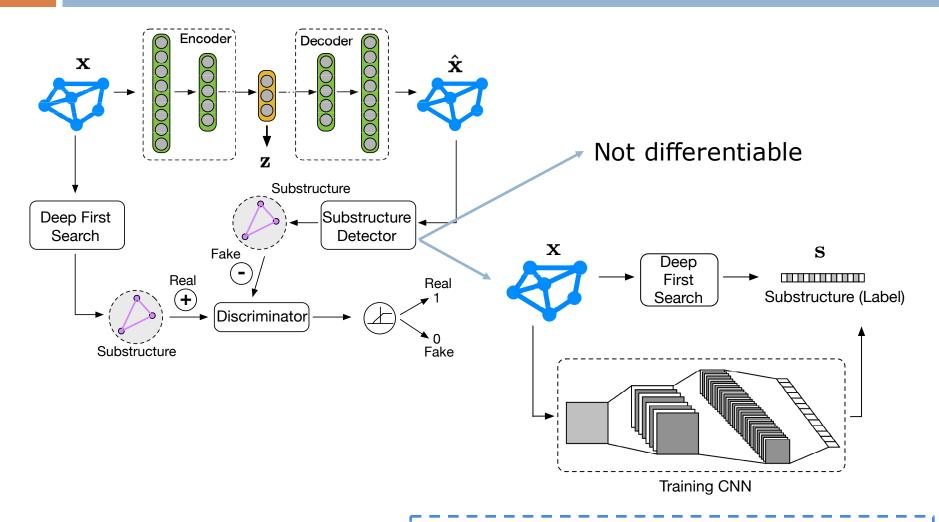


Approximating Substructure Detector



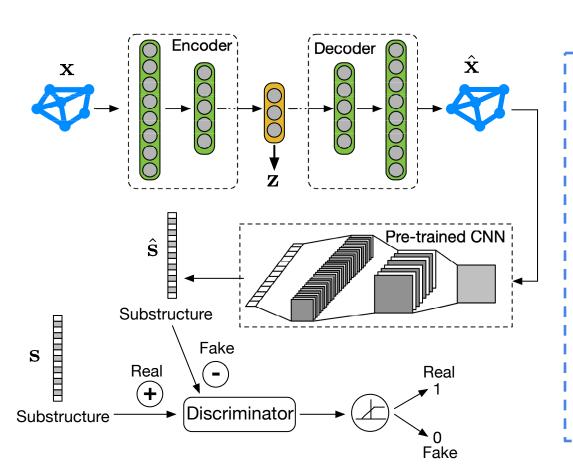
Pre-train a Convolutional Neural Network (CNN) to approximate the traditional substructure detector

Approximating Substructure Detector



Pre-train a Convolutional Neural Network (CNN) to approximate the traditional substructure detector

Summary



Generator

Autoencoder linked with an approximated substructure detector (pre-trained CNN)

Discriminator

A multilayer percetron

Adversarial Training

• Discriminator accuracy

$$\mathcal{L}_D = \frac{1}{m} \sum_{i=1}^{m} [\log D(\mathbf{s}_i) + \log(1 - D(G(\mathbf{x}_i)))]$$

Generator loss

$$\mathcal{L}_G = \frac{1}{m} \sum_{i=1}^m \log(1 - D(G(\mathbf{x}_i)))]$$

Optimization

□ Training

$$\mathcal{L}_{AE} = \frac{1}{2} \sum_{i=1}^{m} \|(\mathbf{x}_i - \hat{\mathbf{x}}_i)\|_2^2$$
 Reconstruction Loss

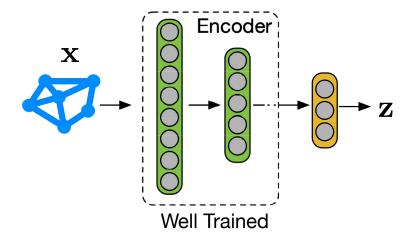
$$\mathcal{L} = -\lambda_D \mathcal{L}_D + \lambda_G \mathcal{L}_G + \lambda_{AE} \mathcal{L}_{AE}$$

$$\mathcal{L} = -\lambda_D \mathcal{L}_D + \lambda_G \mathcal{L}_G + \lambda_{AE} \mathcal{L}_{AE}$$
Discriminator Loss
$$\mathcal{L}_D = \frac{1}{m} \sum_{i=1}^m [\log D(\mathbf{s}_i) + \log(1 - D(G(\mathbf{x}_i)))]$$

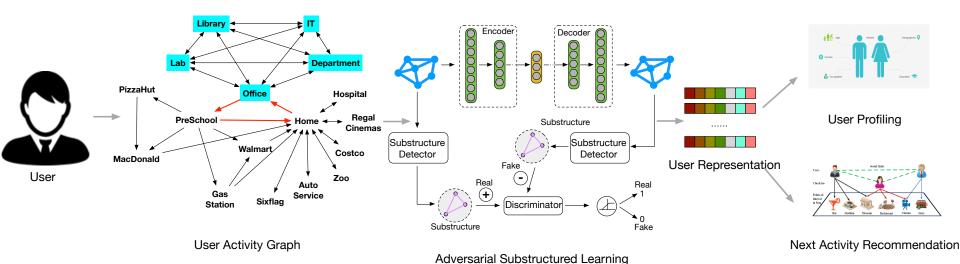
$$\mathcal{L}_G = \frac{1}{m} \sum_{i=1}^m \log(1 - D(G(\mathbf{x}_i)))]$$

$$\mathcal{L}_G = \frac{1}{m} \sum_{i=1}^{m} \log(1 - D(G(\mathbf{x}_i)))]$$

Testing



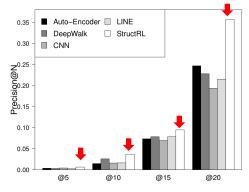
What To Do Next: Inferring Next Activity Type

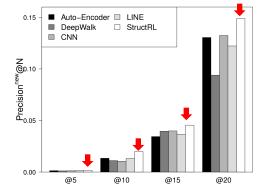


- Given a time period, learn a user's profiles from corresponding user activity graph
- 2. Exploit user profiles to forecast next activity type

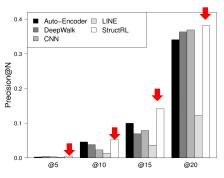
Overall Comparisons on New York and Tokyo Activity Check-in Data

Apply the learned representations to predict next activity type (next POI category)

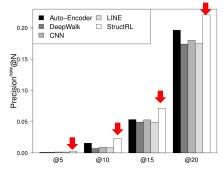




(a) Precision@N with New York dataset



(b) Precision^{New}@N with New York dataset



(c) Precision@N with Tokyo dataset

- (d) Precision^{New}@N with Tokyo dataset
- Our model achieves the best performances on user profiling
- Substructures in a graph are essential for user behavior patterns

Data

Mobile activity checkin data of NYC and Tokyo

City	# Check-ins	# POI Categories	Time Period
New York	227428	251	12 April 2012 to 16 February 2013
Tokyo	573703	247	12 April 2012 to 16 February 2013

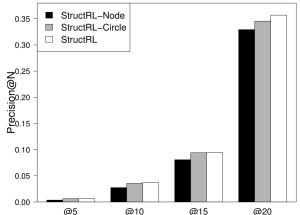
Evaluation Metrics

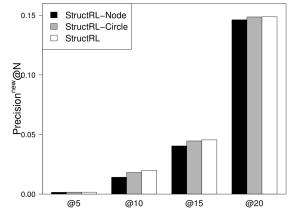
- The precision@N of activity category prediction
- The precision@N of new activity recommendation

Baselines

- Autoencoder
- DeepWalk: use truncated random walks to learn latent representations
- □ LINE: preserve both local and global network structures with an edge-sampling algorithm
- CNN: Convolutional Neural Network

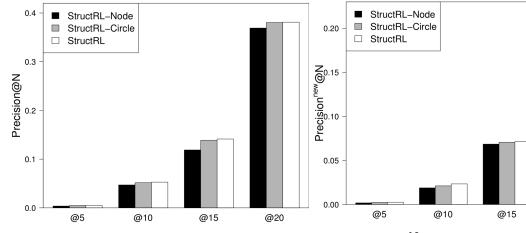
Study of Node and Circle Substructures





(a) Precision@N with New York dataset

(b) Precision^{New}@N with New York dataset



(c) Precision@N with Tokyo dataset

(d) $Precision^{New}@N$ with Tokyo dataset

@20

Evaluation Metrics

- The precision@N of activity category prediction
- The precision@N of new activity recommendation

Baselines

- StructRL: consider node and circle substructures
- StructRL-Node: only consider node substructures
- StrucctRL-Circle: only consider circle substructure

Findings

- Circle substucture are more effective
- Capturing more subgraph topologies can help

Conclusion

Research Problem

 Learn to profile users by both considering general interests and specific interests for certain activity types

Method

- Users as Activity Graphs
- Formulate modeling specific interests as preserving substructures of user activity graphs
- Propose an adversarial substructured learning model to integrate substructure into representation learning

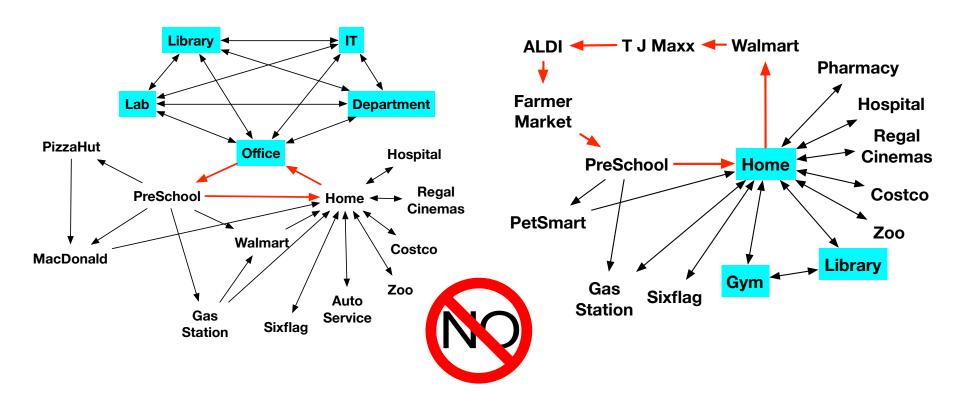
Take Away Messages

- Adversarial learning plays the role of regularization
- □ Substructure is very important for quantifying user behavior patterns
- □ Pre-train neural networks to approximate undifferentiable algorithms
- ☐ Circle is more effective than independent vertexes for profiling users

Thanks!

Questions?

Will The Traditional Solution Work?



Topologies, contents, locations of subgraphs will dynamically change over users

Will The Traditional Solution Work?

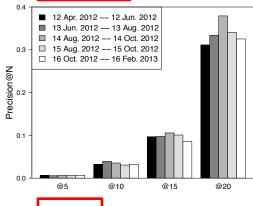
0	0	1	1
0	0	1	1
0	0	0	0
0	0	0	0

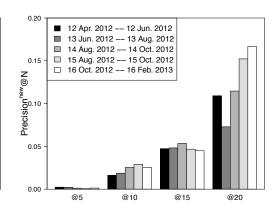
0	0	0	0
0	0	0	0
0	1	1	0
0	1	1	0

Example: Dynamic binary indicator of subgraphs in the activity matrix/graphs of two users

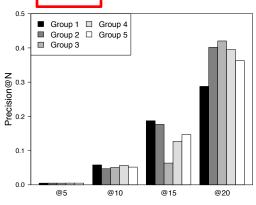
Robustness Check

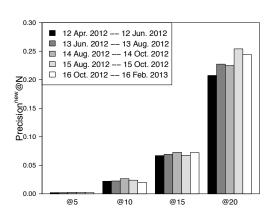
New York





Tokyo





Five Periods

- □ 12 Apr. 2012 12 Jun. 2012
- □ 13 Jun. 2012 13 Aug. 2012
- 14 Aug. 2012 14 Oct. 2012
- □ 15 Aug. 2012 15 Oct. 2012
- □ 16 Oct. 2012 16 Feb. 2013

Prediction

□ set the last day's activities of each time period as a predictive target

 The performances of our method can achieve a small variance and are relatively stable, especially when K is small.