Automating Feature Subspace Exploration via Multi-Agent Reinforcement Learning

Kunpeng Liu, Yanjie Fu, Pengfei Wang, Le Wu, Rui Bo, Xiaolin Li

2

Background and Motivation

- Problem Statement
- Methodology
- Evaluation
- Conclusion

Feature Selection

Feature selection: An iterative exploration process to find an optimal / near optimal subset of features

Selecting the Optimal Subset

Reinforcement Learning as A Tool of Exploration

Reinforcement learning: exploration + exploitation

Traffic light control via RL

Taxi fleet management via RL

Inspiration: Can reinforcement learning help to solve/improve feature selection?

6

Reinforcement Learning (Exploration Tool)

Feature Selection (Exploration Problem)

How can we reformulate the feature selection problem into a reinforcement learning task?

Feature Selection as A Multi-Agent Reinforcement Learning Task (1)

Feature Selection as A Multi-Agent Reinforcement Learning Task (2)

Feature Selection as A Multi-Agent Reinforcement Learning Task (3)

Agent

Feature Selection as A Multi-Agent Reinforcement Learning Task (4)

Feature Selection as A Multi-Agent Reinforcement Learning Task (5)

Overall Reward: Weighted sum of prediction accuracy, redundancy and relevance of selected feature subset.

Feature Selection as A Multi-Agent Reinforcement Learning Task (6)

Agent

14

How can we design the assignment strategy?

□ For the current k_{th} iteration

- Participating feature agents:
 - **Select** action $(k_{th} \text{ iteration}) \& \text{ Select} \operatorname{action}((k-1)_{th} \text{ iteration})$
 - □ **Select** action (k_{th} iteration) & **Deselect** action((k-1)_{th} iteration)
 - **Deselect** action (k_{th} iteration) & **Select** action((k-1)_{th} iteration)
- Non-participating agents:
 - **Deselect** action (k_{th} iteration) & **Deselect** action((k-1)_{th} iteration)

Reward Assignment Strategy

Participating agents

□ Equally share the overall reward.

non-participating agents:

 \Box 0 reward.

17

How can we better quantify the state representation?

- Meta descriptive statistics.
- > Auto-encoder based representation.
- Dynamic-graph based Graph Convolutional Network(GCN).

Meta Descriptive Statistics

- Step 1: Draw statistics column-wisely.
- Step 2: Draw statistics row-wisely.
- Step 3: Expand the statistics matrix.

Auto-Encoder Based Representation

20

Step 1: Encode column-wisely.

Step 2: Encode row-wisely.

Step 3: Expand the encoded matrix.

Dynamic-Graph Based GCN

Step 1: Draw a fully-connected graph.Step 2: Update each node's representation.Step 3: Aggregate all nodes' representations.

How can we improve the training efficiency of DQN in MARL?

GMM Based Sampling for Acceleration

Improve quality of training data in Experience Replay.

Conventional sampling strategy.

23

GMM based sampling strategy.

Experimental Setup

Experimental Data

- The experiments are carried on a publicly available dataset with 15120 samples and 54 features.
- https://www.kaggle.com/c/forest-cover-type-prediction/data.

Predictive Task

□ The task is to classify the forest cover types into 7 classes.

Experimental Questions

- □ Can our study improve feature selection performance?
- How do different reward quantification methods impact the performance of our method?
- How do different state representation methods impact the performance of our method?
- Can GMM sampling strategy improve exploration efficiency?

Performances over Different Classifiers and Feature Selectors

		Predictors				
		RF	LASSO	DT	SVM	XGBoost
Algorithms	K-Best	0.7943	0.8246	0.8125	0.8324	0.8076
	mRMR	0.8042	0.8124	0.8096	0.8175	0.8239
	LASSO	0.8426	0.8513	0.8241	0.8131	0.8434
	RFE	0.8213	0.8236	0.8453	0.8257	0.8348
	GFS	0.8423	0.8318	0.8350	0.8346	0.8302
	SARLFS	0.8321	0.8295	0.8401	0.8427	0.8450
	MARLFS	0.8690	0.8424	0.8583	0.8542	0.8731

Our method: **MARLFS**. For the accuracies, the **higher**, the **better**.

Baselines: K-Best Selection, **mRMR**, LASSO, Recursive Feature Elimination (**RFE**), Genetic Feature Selection (**GFS**) and Single-Agent Reinforcement Learning Feature Selection (SARLFS). **Evaluation Metrics:** overall accuracy

Performances over Different Reward Functions

For accuracies and bars, the **higher**, the **better**.

(relevance), RD (redundancy), ACC+RV+RD. **Evaluation Metrics:** overall accuracy, precision, recall and F-measure.

Performances over Different State Representation Methods

For accuracies and bars, the **higher**, the **better**.

Performance over Different GMM Sampling Strategies

0.9 1.00 Variants: p=0.1 p=0.2 proportion of high-0.95 p=0.3 p=0.4 □ p=1.0 quality varies from Accuracy @ Step 80 06^{.0}S 0.1 to 1.0 Precision @ 0.82 **Evaluation Metrics:** 0.8 overall accuracy, ← p=0.1 ■ p=0.2 precision, recall p=0.3 ♦ p=0.4 0.75 and F-measure. p=1.0 0.75 0 2100 300 600 900 1200 1500 1800 2400 2700 3000 0.70 Exploration Step C1 C2 C3 C4 C5 C6 C7 1.0 1.0 p=0.1 p=0.1 p=0.2 p=0.2 p=0.3 p=0.3 □ p=0.4 p=0.4 0.9 0.9 □ p=1.0 □ p=1.0 F-Measure @ Class Recall @ Class 8'0 0.8 0.7 0.7 0.6 0.6 C1 C2 C3 C4 C5 C6 C7 C2 C4 C5 C6 C7 C1 СЗ

For accuracies and bars, the **higher**, the **better**.

Conclusions

30

Understandings

- □ Feature selection is a space exploration process.
- Feature selection can be improved by multi-agent reinforcement learning framework.

Techniques

- □ We propose three **state representation** methods.
- □ We propose GMM-based **sampling** strategy.
- □ We design **reward** quantification and assignment.

Thank you!